HOMEWORK 10 MATH 430, SPRING 2014

Recall the result from last homework, that if $\mathfrak{B} \models PA$, then it is an end extension of \mathfrak{A} (the standard model). Use this for the following problem.

- **Problem 1.** (1) Suppose that ϕ is a Σ_1 formula and $\mathfrak{A} \models \phi$. Show that $PA \models \phi$. I.e. show that any $\mathfrak{B} \models PA$ is a model of ϕ .
 - (2) Suppose that ϕ is a Π_1 formula and for some model \mathfrak{B} of PA, $\mathfrak{B} \models \phi$. Show that $\mathfrak{A} \models \phi$.

For i < n, define the projection $P_i^n : \mathbb{N}^k \to \mathbb{N}$ to be $P_i^n(x_0, ..., x_{n-1}) = x_i$. The **primitive recursive functions** are functions $f : \mathbb{N}^k \to \mathbb{N}$ that are built up from the constant function $x \mapsto 0$, successor, and projection, by applying composition and the primitive recursive operation:

- $f(0, x_1, ..., x_{k-1}) = g(x_1, ..., x_{k-1}),$
- $f(S(y), x_1, ..., x_{k-1}) = h(y, f(y, x_1, ..., x_{k-1}), x_1, ..., x_{k-1}).$

where g and h are primitive recursive.

Problem 2. Show that addition is primitive recursive. I.e. you have to show that the function $(x, y) \mapsto x + y$ can by written as above.

For a function $f: \mathbb{N}^k \to \mathbb{N}, \phi_f$ will denote the formula such that

 $\mathfrak{A} \models \phi_f[a_0, ..., a_{k-1}, b]$ iff $f(a_0, ..., a_{k-1}) = b$.

For example, if f is the addition function, then $\phi_f(x, y, z)$ is the formula x + y = z. Note that for each of the $x \mapsto 0$, successor, projection, addition, multiplication, the corresponding formula is atomic and therefore Δ_0 .

Problem 3. Suppose that f is defined by primitive recursion from functions g, h as above and suppose that ϕ_g, ϕ_h are Δ_1 . Write down ϕ_f in terms of ϕ_g, ϕ_h and show it is also Δ_1 .

Problem 4. Suppose that $f : \mathbb{N}^k \to \mathbb{N}$ and that ϕ_f is Σ_1 . Show that ϕ_f is also equivalent to a Π_1 formula, and therefore Δ_1 .

Hint: It is enough to show that $\neg \phi_f$ is equivalent to Σ_1 . Then use that negations of Σ_1 formulas are equivalent to Π_1 formulas.

FYI: The **partial recursive functions** recursive functions are built up from primitive recursive functions by including "minimization": if g is recursive, then

 $f(x_0, ..., x_{n+1}) =$ the least y such that $g(y, x_0, ..., x_{n+1}) = 0$

is partial recursive. I.e. its domain is a subset of \mathbb{N}^n . If the domain is all of \mathbb{N}^n , then f is total recursive. One can show that:

- f is partial recursive iff φ_f is Σ₁;
 f is total recursive (or just recursive) iff φ_f is Δ₁;